1.  > 数控

数控机床坐标偏差-数控车床工件坐标系偏移

数控机床坐标偏差-数控车床工件坐标系偏移

大家好,今天小编关注到一个比较有意思的话题,就是关于数控机床坐标偏差的问题,于是小编就整理了1个相关介绍数控机床坐标偏差的解答,让我们一起看看吧。

  1. 数控加工中心加工出现误差的原因有哪些?

1、数控加工中心加工出现误差的原因有哪些?

生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。导致此类故障的原因主要有以下方面:

1)机床进给单位被改动或变化

2)机床各轴的零点偏置(NULLOFFSET)异常

3)轴向的反向间隙(BACKLASH)异常

4)电机运行状态异常,即电气及控制部分故障

5)此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。

1.系统参数发生变化或改动

系统参数主要包括机床进给单位、零点偏置、反向间隙等等。例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。

2.机械故障导致的加工精度异常

一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。调查中了解到:故障是突然发生的。机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。分析认为,主要应对以下几方面逐一进行检查。

(1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。

(2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。

(3)检查机床Z轴精度。用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1gt;d=0.1mm(斜率大于1);②表现出为d=0.1mmamp;gt;d2gt;d3(斜率小于1);③机床机构实际未移动,表现出最标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),恢复到机床的正常运动。

无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。补偿中发现,间隙补偿越大,第①段的移动距离也越大。

分析上述检查,数控技工培训认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。而正常情况下,应能感觉到轴承有序而平滑的移动。经拆检发现其轴承确已受损,且有一颗滚珠脱落。更换后机床恢复正常。

3.机床电气参数未优化电机运行异常

一台数控立式铣床,配置FANUC0-MJ数控系统。在加工过程中,发现X轴精度异常。检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。

分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。利用FANUC系统的参数功能,对电机进行调试。首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常。

4.机床位置环异常或控制逻辑不妥

一台TH61140镗铣床加工中心,数控系统为FANUC18i,全闭环控制方式。加工过程中,发现该机床Y轴精度异常,精度误差最小在0.006mm左右,最大误差可达到1.400mm.检查中,机床已经按照要求设置了G54工件坐标系。在MDI方式下,以G54坐标系运行一段程序即“G90G54Y80F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046.605”,记录下该值。然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046.992”,同第一次执行后的数显示值相比相差了0.387mm.按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复定位误差过大。对Y轴的反向间隙及定位精度进行仔细检查,重新作补偿,均无效果。因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当Y轴松开时,主轴箱向下掉,造成了超差。

对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。调整后机床故障得以解决。文章链接:数控等离子切割机 http://www.hycsk.com

可能有以下几个方面:

1. 设备问题:数控加工中心的设备可能存在一些问题,例如机床的刚度不足、导轨的磨损、主轴的偏差等,这些问题都可能导致加工误差的出现。

2. 刀具问题:刀具的选择、刃口磨损、刀具的材质等都会影响加工精度,如果刀具不合适或者磨损严重,就会导致加工误差的出现。

3. 编程问题:数控加工中心的编程也可能存在问题,例如程序错误、参数设置不当等,这些问题都会导致加工误差的出现。

4. 材料问题:加工的材料可能存在一些问题,例如材料硬度不均匀、材料内部存在缺陷等,这些问题都会影响加工精度。

5. 环境问题:加工环境也可能会影响加工精度,例如温度、湿度等因素都会对加工精度产生影响。

综上所述,数控加工中心加工出现误差的原因可能有很多方面,需要综合考虑。

数控加工中心是一种高精度、高效率的自动化金属加工设备,配备多工位刀塔或动力刀塔,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂工件,具有直线插补、圆弧插补各种补偿功能,并在复杂零件的批量生产中发挥了良好的经济效果。但由于控制系统、驱动系统及被控制对象的电气和机械系统中出现任何问题都会导致误差问题,下面简单介绍下数控加工中心出现误差的原因和解决方案:

一、机床出现误差产生的原因

①在高速加工中数控系统可能存在升降速误差和伺服系统滞后误差

②由于控制系统、驱动系统及被控制对象的电气和机械系统存在惯性,在加速度很大的情况下会出现冲击、震荡、超程、失步等动态误差。

③三轴联动数控端铣加工中加工误差由直线逼近误差和法向矢量转动误差两方面因素组成;

④加工误差与加工表面法曲率、刀具半径、插补长度有关,且与插补长度的平方成正比;

⑤插补段内最大加工误差发生在中点附近;

⑥法向矢量转动误差是由于加工表面法向矢量沿插补直线方向的转动引起的,且与刀具半径大小成正比。

⑦由刀具材质和切削油性能的影响产生的精度误差。

二、机床误差的补偿方法

①数控系统自动升降速由数控系统的软件功能自动实现,基本要求是所选用的升降速规律应保证轨迹精度和位置精度,保证升降速过程的快速性、平稳性和稳定性,同时控制算法应尽可能简单便于计算机实现。

②法向矢量转动误差对凸曲面可通过修正刀心位置的方法补偿,凹曲面不需要补偿;系统无自动补偿功能时则采用减小刀具半径从而减小该误差的方法加以控制。

③直线逼近误差由插补弦长决定,插补弦长与数控系统插补周期和刀具进给速度有关,选择插补周期较小的数控系统或减小进给速度可以控制直线逼近误差。

④切削行残留高度误差是影响曲面加工中工件表面粗糙度的主要因素,通过选择合理的切削行宽度工艺参数,可以控制该误差大小。

⑤数控中心的刀具材质与所选用的切削油性能直接影响到刀具的磨损程度,快速磨损的刀具会对工件产生较大的误差。针对不同的工艺选用对应的刀具和切削油有助于提高工件精度。

以上就是数控中心工艺误差产生的原因,只有分析清楚误差产生的机理才能针对性地采取措施才能有效的提高工件的质量。

到此,以上就是小编对于数控机床坐标偏差的问题就介绍到这了,希望介绍关于数控机床坐标偏差的1点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100#qq.com,#换成@即可,我们会予以删除相关文章,保证您的权利。 转载请注明出处:/shukong/51051.html

联系我们

电话:400-658-2019

微信号:7151897

工作日:9:30-18:30,节假日休息